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Abstract. Starting from any linear pseudo-Anosov map ϕ on a surface of
genus g > 2, we construct explicitly a family of non-linear pseudo-Anosov

maps f by adapting the construction of Smale’s Derived from Anosov maps

on the two-torus. This is done by perturbing ϕ at some fixed points. We
first consider perturbations at every conical fixed point and then at regular

fixed points. We establish the existence of a measure µ, supported by the

non-trivial unique minimal component of the stable foliation of f , with re-
spect to which f is mixing. In the process, we construct a uniquely ergodic

generalized interval exchange transformation with a wandering interval that is

semi-conjugated to a self-similar interval exchange transformation. This gen-
eralized interval exchange transformation is obtained as the Poincaré map of

a flow renormalized by f . When f is C2, the flow and the generalized interval
exchange transformation are C1.

1. Introduction

Along with the Spectral Decomposition of Diffeomorphisms theorem, Smale [26,
Theorem I.6.2] introduced Derived from Anosov maps – build by perturbing a lin-
ear Anosov transformation of the two-torus at a fixed point – in order to provide
an example of transformation with a proper hyperbolic nonwandering set. The
topological classification of such admissible basic sets is performed in dimension
2 in [3, 2]. Later, Coudène [12, Chapter 9] introduced an explicit formula for
such a map – which differs slightly from the one used in [20, Section 17.2]. This
formula is interesting from several viewpoints: it is an explicit Axiom A diffeomor-
phism which renormalizes a C1 flow, a slightly more general setting than the recent
Giulietti–Liverani horocyclic flows construction [17] – see [10] for more details. Fur-
thermore, the Poincaré map of the flow on a transversal closed curve provides a
Denjoy counter-example.

The purpose of this paper is to provide explicit generalizations of Coudène’s
construction to surfaces of higher genus.

Since the work of Thurston [14], it is known that pseudo-Anosov maps are rel-
evant examples of surface diffeomorphisms. Essentially, in the orientable case, a
pseudo-Anosov map on a surface Sg of genus g > 2 can be defined as an element of
the homotopy class of a map preserving a flat metric on Sg and locally given – in
the natural coordinates associated to the half-translation structure – by the action
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of a diagonal and hyperbolic matrix of determinant one. Furthermore, up to a sign
change, the matrix is constant on SgrΣ – where Σ denotes the set of conical points.
The element of the homotopy class given by the action of the matrix is called linear
pseudo-Anosov, and we call non-linear pseudo-Anosov any element of its homotopy
class. It easily follows from this definition that iterates of a pseudo-Anosov map
are also pseudo-Anosov maps. See for instance [21] for an equivalent definition and
many instructive examples.

Many of the dynamical properties of linear pseudo-Anosov maps are known and
can be found in [13, 14] and more recently in [15]. For instance, stable and unstable
measured foliations are uniquely ergodic, every leaf of these foliations is dense, and
the map is Bernoulli with respect to the product measure – which has full support.
However, most of these properties do not hold for general non-linear pseudo-Anosov
maps since homotopy classes do not generally coincide with conjugacy classes – for
example, it is not the case for homeomorphism of the circle.

In this paper, we prove the following result using an explicit construction:

Theorem 1.1. If ϕ is a linear pseudo-Anosov map on Sg preserving an Abelian
differential which vanishes on the finite set Σ of conical points, then there exist
an integer n and a non-linear pseudo-Anosov map f homotopic to ϕn, a proper
f -invariant compact connected hyperbolic subset K  Sg r Σ, and a f -invariant
measure µ supported by K such that

(i) K is an Axiom A attractor for f−1|SgrΣ,
(ii) K is locally the product of an interval with a Cantor set,

(iii) K is the minimal set of the stable foliation of f ,
(iv) f is mixing with respect to µ. In fact, µ is the unique SRB measure of f−1.

In particular, since K 6= Sg, f and ϕn are homotopic but cannot be conjugated.

The transformation f is constructed in a similar fashion as in [12, Chapter
9] by perturbing ϕn at conical points. A similar construction can be performed
by perturbing ϕn at a regular fixed point, and counterpart results are stated in
Section 5 (Theorem 5.8).

In this particular construction, along the lines of the proof of Theorem 1.1, we
are bound to consider a flow renormalized by f . This leads to our second result:

Theorem 1.2. For every function f constructed as in Theorem 1.1, there exists a
flow ht on Sg r Σ such that

(i) ht is complete on K and d
dtht(x)|t=0 spans the stable foliation of f , for all

x in K,
(ii) for all real t and all x in Sg r Σ, whenever both sides of the equation are

well defined, f ◦ hλt(x) = ht ◦ f(x), where λ > 1 is the dilation of ϕn,
(iii) ht is uniquely ergodic, with unique invariant measure supported by K,
(iv) K is an attractor (for future and past times) for ht, on which the flow acts

minimally.

Furthermore, if f is C2, then ht is a C1 flow.

Foliations with a similar property – namely being locally the product of an
interval with a Cantor set – have been studied in [6, 4] in the case of the geodesic
flow of homothety surfaces.

The proof of Theorem 1.2 relies on a criterion for establishing a semi-conjugacy
between a generalized interval exchange transformation – GIET for short – with an
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interval exchange transformation – IET for short – studied by Yoccoz in [27]. This
criterion is based on the Rauzy–Veech renormalization algorithm for GIET. An IET
is a piece-wise translation bijection, with finitely many branches, of a given base
interval, while a GIET is a bijection of the interval which is a piece-wise increasing
homeomorphism with finitely many branches. These transformations can be seen as
the first return map of a flow on a surface to an interval. See for instance the surveys
[16, 29]. On the other hand, IET and GIET can also be seen as generalizations of,
respectively, rigid translations and diffeomorphisms of the circle.

Since the work of Denjoy – see [18, 1] – it is known that every C1 diffeomorphism
of the circle such that the logarithm of its derivative is a function of bounded vari-
ation has no wandering interval. There is no analogous result concerning interval
exchange transformations. In fact, there are several counter-examples, including
some very smooth ones. In [22] Levitt found an example of non-uniquely ergodic
affine interval exchange transformation – AIET for short – with wandering inter-
vals. Latter, using Rauzy–Veech induction, Camelier and Gutierrez [9] exhibited a
uniquely ergodic AIET with wandering intervals, semi-conjugated to a self-similar
IET – i.e. an IET induced by the foliation of a pseudo-Anosov diffeomorphism.
Then Bressaud, Hubert and Maass [7] found a Galois type criterion on eigenvalues
of a matrix associated to a self-similar IET in order to admit a semi-conjugated
AIET with wandering intervals. Finally, Marmi, Moussa and Yoccoz proved [23]
that almost every IET admits a semi-conjugated AIET with a wandering interval.

While proving Theorems 1.1 and 1.2, we obtain the following result:

Theorem 1.3. For all self-similar IET T0 arising from a pseudo-Anosov map
which fixes an Abelian differential, there exists a C1 GIET T semi-conjugated to T0

such that

(i) T has a unique minimal set. This set is a Cantor set and is an attractor
for T and T−1,

(ii) T is uniquely ergodic,
(iii) T has wandering intervals.

Furthermore T can be chosen to be the Poincaré map of a C1 flow of a surface and
to have a unique wandering interval.

1.1. Reader’s guide. Section 2 is devoted to the construction of a good candidate
for the map f of Theorem 1.1 and to proving the existence of an invariant hyperbolic
set constructed as an attractor for f−1. The construction is based on Smale’s idea
[26, Section I.9] of Derived from Anosov map, and generalizes the construction
done by Coudène in [12, Chapter 9] and in [11]. Here, the construction consists in
perturbing a given pseudo-Anosov map ϕ – which, up to taking one of its power,
fixes each conical point – by taking benefits of the branched cover surrounding each
conical point. From the construction, there exists a natural homotopy between ϕ
and f . To avoid notational complications, we perturb at all conical points, but a
similar construction can be performed by perturbing only at some conical points.
All properties hold in that more general setting. We then check basic properties
for the map f . In addition, we prove the existence of an invariant compact subset
K and show that this set is hyperbolic by computing explicitly a vector field vs

spanning the stable foliation – the unstable foliation coincides with the one of ϕ.
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By construction, vs satisfies, for all x in K, the relation

dxf v
s(x) = λ−1vs(f(x))(1.1)

where λ > 1 is the dilation of ϕ.
Most of the work is carried in Section 3. We prove several technical results

concerning the domain and the regularity of vs. In particular, we prove that vs

extends to Sg r Σ into a Lipschitz continuous vector field (Theorem 3.7) which
satisfies (1.1) everywhere. Under an additional assumption on the regularity of f ,
we prove that vs is C1 (Theorem 3.8). We also prove that the homotopy between ϕ
and f induces a homotopy between vs and the constant vector field spanning the
stable foliation of ϕ (Theorem 3.10). By integration of vs, we get a flow ht that
satisfies

f ◦ ht(x) = hλ−1t ◦ f(x)(1.2)

because of (1.1), for all x in Sg r Σ and t in R whenever both sides are well
defined. Using this commutation relation we deduce that K is connected and that
f : K → K is topologically transitive. A similar commutation relation is used
by Butterley–Simonelli [8] where a parabolic flow is renormalized by a partially
hyperbolic map on some 3-dimensional manifold.

In Section 4 we prove that f is mixing with respect to a measure supported by K.
Because of the commutation relation (1.2) and the usual functional characterization
of mixing, it is sufficient to prove that ht is uniquely ergodic in order to prove that f
is mixing. This last step is done by considering the induced GIET T by ht to some
transversal interval. Using the homotopy of vector fields, we prove that T follows
the same full path as a self-similar IET T0 during the Rauzy–Veech algorithm,
hence T is semi-conjugated to T0 by a result of Yoccoz [27, Proposition 7] – this
proves Theorem 1.3. Unique ergodicity of ht will then follow from writing ht as the
suspension flow of T .

Section 5 is devoted to extending results of Sections 3 and 4 to a slightly different
construction than the one in Section 2. There, instead of perturbing a pseudo-
Anosov map at conical points, the perturbation is done near a regular fixed point.
Most of the results obtained in previous sections hold in this setting.

Finally, in the last section, using extensively Ruelle’s results [24] on the SRB
measure of Axiom A attractors, we prove that µ is the unique SRB measure of
f−1 for a C2 perturbation, and that the correlations decrease exponentially fast
for C1 observables. We also ask whether the result on Ruelle spectrum of linear
pseudo-Anosov maps [15] extends to the present case.

2. Perturbations of pseudo-Anosov maps with hyperbolic attractors

In this section we give a method to construct a generalization of Smale’s Derived
from Anosov maps – which are defined on the two torus – from a perturbation of a
given linear pseudo-Anosov map – on a surface of genus g > 2. We then investigate
some classical properties of dynamical systems in the case of those specific non-
linear pseudo-Anosov transformations. We first prove that these maps are well
defined and are homeomorphisms. Then, we show that for some good choices of
parameters, conical points are the only attractive fixed points of f . Since the
basins of attraction are disjoint open sets and the underlying surface is connected,
the complement K of the union of the basins of attraction is not empty. This
compact set K is of great importance since in a certain sense the chaotic behaviour
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of the map f is concentrated in K. More precisely, we show that K is a compact
hyperbolic set.

2.1. Perturbation of a pseudo-Anosov. Let ϕ be a linear pseudo-Anosov trans-
formation on the Riemann surface Sg of genus g. Therefore the invariant foliations
of ϕ can be derived from a holomorphic quadratic differential q invariant by ϕ. Up
to consider a cover of order two in most cases, it is not too restrictive to assume that
the quadratic differential is Abelian, in other words q = ω2 so that the transition
maps, of the flat structure induced by natural coordinates of ω, are pure transla-
tions. Up to multiplying ω by a modulus one complex number, the horizontal and
vertical foliations {<(ω) = 0} and {=(ω) = 0} are the invariant foliations of ϕ. Let
λ > 1 denote the stretch factor of ϕ. This stretching is assumed to correspond to
the vertical measured foliation. The horizontal measured foliation is stretch by a
factor λ−1. Let Σ be the set of points where ω vanishes, and we call these points
conical points. We now consider the flat structure induced by ω on Sg r Σ, that
is charts z so that ω = dz. In the neighborhood of every conical point σ ∈ Σ,
there exist a positive integer nσ, an open set and a chart z on this set such that
ω = znσ−1dz. The angle around σ is then 2πnσ.

Outside of these neighbourhoods of points of Σ, we set f to be equal to ϕ. We
now construct f to be a perturbation of ϕ around each σ in Σ.

Let σ be a conical point, Vσ a neighborhood of σ and a chart z on Vσ so that
ω = znσ−1dz. Let ξ be the branched cover at σ associated to the chart z, ξ : z ∈
z−1Vσ 7→ znσ ∈ ξ(z−1(Vσ)) ⊂ C. Let (Wi)16i62nσ be a family of open sets of
C rR+ such that all ξ|Wi are homeomorphisms. Up to replacing ϕ by one of its
power, we assume that every conical point is fixed by ϕ and that ϕ respects the
leaves of the branched covers: ϕ(Wi) ∩ Vσ ⊂Wi for all i.

We can define f on the base of the branched cover in the exact same manner as
Smale [26, Section I.9] does. In order to perform further analysis on the map, we
give the following explicit formula that generalized the one used in [12, Chapter 9]
and [11] in the case of the cat map on the two-torus.

For z = x+ iy ∈ CrR+ in the image of ξ, we define f as :

f(ξ|−1
Wi

(z)) := ξ|−1
Wi

(
(λ+ βσkσ(|z|/ασ))x+ iλ−1y

)
,

for some ασ > 0, βσ < 1 − λ and with |z| 6 ασ and where kσ : R → R is an
even unimodal map of class C1, compactly supported in [−1, 1] and such that k′σ is
Lipschitz continuous, for example kσ(r) = (1−r2)21[−1,1]. We do this perturbation
at every conical point. We will see that such f is well defined for small enough ασ.

When such a map f is well defined, we will see in next section that interpolating
(βσ)σ∈Σ with 0 gives a homotopy between f and ϕ. Therefore, f is an example of
non-linear pseudo-Anosov transformation.

We give in Figure 1 a heuristic representation, when nσ = 1 – which corresponds
to the case treated by Smale in [26].

Remark 2.1. Because this construction generalizes Coudène’s one [12, Chapter 9]
on the two-torus, all results obtained in following sections have their counterparts
in the two-torus case.

2.2. Smoothness and range of parameters. In order to ensure that the explicit
construction introduced above makes sense, we need to ensure that the open sets
Vσ near each conical point do not overlap with one another, nor with themselves.
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Figure 1. Heuristic representations of a saddle and of a per-
turbed saddle.

This can be easily done by taking the parameter ασ small enough. We give a simple
bound on their size by geometric considerations.

Let Systs.c(Sg) = inf{d(σ1, σ2) | σ1, σ2 ∈ Σ}, where d is the distance for the flat
metric on Sg associated to the invariant measured-foliation of ϕ. Let Syst(Sg) =
inf{l(γ) | γ 6= 0 in π1(Sg)} be the smallest possible length of any non-trivial loop.
Then define δΣ = min(Systs.c(Sg), Syst(Sg)).

Proposition 2.2. For all βσ ∈]− λ, 0] and all ασ < δΣ/2, f is a homeomorphism
on Sg and is a C1 diffeomorphism on Sg r Σ.

Proof. Clearly, f is continuous on Sg and differentiable everywhere except on Σ.
The differential on Sg r Σ of f is invertible, hence f is a local homeomorphism on
Sg r Σ and hence f(Sg r Σ) is open. In charts around points of Σ, one can see
that f is a local homeomorphism in a neighbourhood of Σ. Hence f(Sg) is open.
Since Sg is compact, f(Sg) is closed. Hence f(Sg) = Sg, because Sg is connected.
Therefore, f is a surjective local homeomorphism, hence f is a covering map. Since
the pre-image of a point of Σ by f is itself, f is injective. �

By refining the range where the βσ live, we can turn conical points into attractive
fixed points.

Proposition 2.3. For βσ ∈]−λ, 1−λ[ and ασ < δΣ/2, σ ∈ Σ is an attractive fixed
point for f . Let Uσ be its basin of attraction. Then Uσ is an open set.

Proof. It is a consequence of the Grobman–Hartman theorem when looking at f
through the branched-covering map around σ. We have Uσ =

⋃
n>0

f−n(B(σ, ε)), for

some small enough ε > 0. �

Since basins of attraction Uσ are disjoint open sets and Sg is connected, these
basins are not an open cover. Therefore the complement of the union of basins is
not empty. Define K := Sg r

⊔
σ∈Σ

Uσ and UΣ =
⊔
σ∈Σ

Uσ. These sets are clearly

invariants by f .

Proposition 2.4. If for some σ ∈ Σ, βσ ∈]− λ, 1− λ[ and ασ < δΣ/2, then there
exists a fixed hyperbolic point pσi , 1 6 i 6 2nσ, on each vertical ray starting at σ.
We number them by going counter-clockwise around σ. All these points are at the
same distance |pσ| from σ. Moreover B(σ, |pσ|) ⊂ Uσ.

Proof. Let σ, βσ and ασ be as in the proposition. Let γ : [0, ασ] → Sg be a
unit speed parametrization of a vertical ray such that γ(0) = σ. Hence, in charts,
f(γ(t)) = (λ + βσk(t/ασ))t. Let h : [0, ασ] → R be the function h(t) = (λ +
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βσk(t/ασ))t. Then h(0) = 0, h(ασ) = λασ > ασ, and h′(0) = λ+βσ ∈ ]0, 1[. Hence
h has a fixed point in ]0, ασ[. Call t0 the smallest fixed point. This value doesn’t
depend on which vertical ray starting from σ we consider. The point p = γ(to) is
fixed by f and is hyperbolic: in the charts centred at σ, the Jacobian matrix of f
at p is

(Jac f)(p) =

(
1 + βσt0

∂
∂xk(d(p,σ)

ασ
) 0

0 λ−1

)
,

where βσt0
∂
∂xk(d(p,σ)

ασ
) > 1.

By definition of t0, we have γ([0, t0[) ⊂ Uσ. Let z ∈ B(σ, t0). In the appropriate
leaf of the branched-cover over σ, we have z = (x, y) in coordinates. Hence,

d(f(z), σ) 6 (λ+ βσk(d(z, σ)/ασ))2x2 + λ−2y2

< (λ+ βσk(t0/ασ))2x2 + λ−2y2 6 x2 + λ−2y2 6 d(z, σ).

Hence, the function z 7→ d(f(z), σ)/d(z, σ) is continuous and strictly bounded from
above by 1 on the compact annulus {z ∈ Sg | ε 6 d(z, σ) 6 t0−ε}. Therefore every
orbit of point from the ball B(σ, t0 − ε) ends up entering the ball B(σ, ε). Hence
the claim. �

2.3. Invariant sets. Here we investigate the topological aspects of the invariant
set K. In particular we prove that it can be written as the union of the closure of
some stable leaves of the hyperbolic fixed points pσi and that it is a hyperbolic set.

We start by proving that the set UΣ is dense in Sg, or equivalently that K is of
empty interior. In order to do this we need the following lemma which is obtained
by simply computing the differential of f .

Lemma 2.5. Define (qσi )i as the 2nσ points at distance |pσ| from σ on the horizon-
tal rays starting from σ. Then for all x ∈ Sgr

⊔
σ∈Σ

(B(σ, |pσ|)∪{qσi | 1 6 i 6 2nσ}),

f is a strict dilation in the vertical direction.

Proposition 2.6. For all x ∈ K and all ε > 0, every vertical segment of length
ε containing x in its interior crosses UΣ. Hence UΣ is dense and K has empty
interior.

Proof. By contradiction, let γ : [−ε, ε]→ Sg be a vertical segment parametrized by
arc length, containing some x ∈ K and such that γ([−ε, ε])∩UΣ = ∅. Without loss
of generality, we can assume that γ(0) = x. Since UΣ is invariant by f , we see that
the existence of some −ε 6 t 6 ε such that fn(γ(t)) ∈ UΣ is impossible. Hence
fn(γ([−ε, ε])) ∩ UΣ = ∅. By construction of f , the set fn(γ([−ε, ε])) is a vertical
segment, containing fn(x) in its interior and of length ln. Since f is a strict dilation
in the vertical direction on the compact set K, there exist l∗ > 1 such that ln > ln∗ .

Let δ = inf{|pσ| | σ ∈ Σ} and since K is compact and invariant by f let y ∈ K
be a subsequential limit of (fn(x))n. Let nk be an increasing sequence of integers
such that fnk(x) converges to y as nk goes to infinity. We know – see [13, corollary
14.15] – that the vertical leaf containing y is at least infinite in one direction and is
dense in Sg. In particular, some sufficiently long section of this leaf, containing y, is
δ/4-dense in Sg. Hence, for large enough nk, the curve fn(γ([−ε, ε])) is sufficiently
long and sufficiently close to the vertical leaf containing y to be δ/2-dense in Sg.
In particular, there exists −ε < t < ε such that d(fn(γ(t)), σ) < δ for some σ ∈ Σ.
This contradicts the fact that B(σ, |pσ|) ⊂ UΣ. �
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Recall definitions of strong stable and strong unstable leaves of x ∈ Sg with
respect to f

W ss(x) = {y ∈ Sg | d(fn(x), fn(y))→ 0 as n→ +∞},
W su(x) = {y ∈ Sg | d(f−n(x), f−n(y))→ 0 as n→ +∞}.

If x is a fixed point of f , then these sets are invariant by f .
Here, these leaves at hyperbolic fixed points pσi enable to describe precisely the

set K. We start by showing that the stable leaves can be seen as the accessible
border of UΣ – and are obviously contained in K. On the other hand, unstable
leaves are dense.

Proposition 2.7. The stable and unstable leaves of the fixed point pσi satisfies the
following assertions.

(i) If x ∈ Uσ and γ : [0, 1]→ Sg is a vertical curve such that γ(0) = x, γ([0, 1[) ⊂
Uσ and γ(1) /∈ Uσ then γ(1) belongs to

⊔
16i62nσ

W ss(pσi ).

(ii) For all σ ∈ Σ and all 1 6 i 6 nσ, the unstable leaf W su(pσi ) contains a full
semi-infinite vertical leaf. Hence W su(pσi ) is dense in Sg.

Proof. We begin with the first point. Let δ > 0 be the length of the smallest
side in the (finite) collection of rectangle neighbourhoods of points pσi given by the
Grobman–Hartman theorem. For n large enough, we find that fn(x) is δ/2-close
to some σ ∈ Σ. Once close to σ by going upward – or downward, depending on the
orientation of fn ◦ γ – the first time fn ◦ γ intersect K is at some point contained
in one of the rectangle neighbourhood of some pσi . Therefore this intersection point
belongs to

⊔
16i62nσ

W ss(pσi ) and is attained at fn(γ(1)). The result then follows

from the invariance by f of the stable leaves.
We now prove the second point. Let γ : [0,+∞[→ Sg be a unit speed parametriza-

tion of the vertical ray starting at σ ∈ Σ and containing p := pσi . In particular,
γ(0) = σ and γ(|pσ|) = p.

By contradiction, assume there exists t > |pσ| such that γ(t) /∈ W su(p). Let
t0 = inf{t > |pσ| | γ(t) /∈W su(p)}.

We now show that t0 > |pσ|. Let h : t 7→ (λ+βσk(t/ασ))t. By construction of f ,
we have the relation f(γ(t)) = γ(h(t)) for every t ∈ [0, ασ[, and hence fn(γ(t)) =
γ(hn(t)) for all n > 0. Now (h−1)′(|pσ|) < 1, so for t close to |pσ|, fn(γ(t))→ p as
n goes to infinity. Therefore t0 > |pσ|.

We now prove that γ(t0) is a fixed point of f . We know that f(γ(]|pσ|, t0[) =
γ(]|pσ|, s[) for some s. But f(γ(]|pσ|, t0[) ⊂W su(p). Hence s 6 t0.

By contradiction, assume there exists ε > 0 such that s+ ε < t0. So γ([|pσ|, s+
ε[) ⊂W su(p), and so f−1◦γ([|pσ|, s+ε[) ⊂W su(p). However, f−1◦γ([|pσ|, s+ε[) ⊂
W su(p) = γ([|pσ|, t0 + δε[) for some δε > 0 since f is strictly preserving vertical
orientation. This contradicts the definition of t0. Therefore s = t0 and γ(t0) is
fixed by f .

The point γ(t0) cannot be in Σ nor be a pσi , otherwise γ would connect two
conical points, which is impossible. By computing the differential of f at γ(t0), we
see that γ(t0) is a hyperbolic fixed point of f with a vertical unstable leaf. Therefore
there exist points whose iterates by f−1 converge to p and to γ(t0) 6= p. �
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These properties of stable and unstable leaves yield to the fact that the set K
can be written as a finite union of closure of stable leaves. In fact, we have the
following slightly stronger result.

Proposition 2.8. The compact set K can be written as a finite union of closed

invariant sets as follow K =
⋃
σ∈Σ

nσ⋃
i=1

W ss(pσi ) ∩W su(pσi ) .

Proof. Let x ∈ K and ε > 0. Let y ∈ UΣ be in the same vertical leaf as x and
obtained by going downward by a distance less than ε. Since UΣ =

⊔
σ
Uσ, there

exists σ ∈ Σ such that y ∈ Uσ. From the Grobman–Hartman theorem, for each
1 6 i 6 2nσ there exists a neighbourhood of pσi on which the dynamic of f is
the same as the one of the differential of f . Without loss of generality, we assume
that these neighbourhoods are rectangles with vertical and horizontal sides and
with centers the pσi ’s. Up to replacing these rectangles by smaller ones, let δσ be a
common horizontal size for these rectangles.

For n > 0 large enough, the point y lies in B(σ, δσ/4). By construction and by
the first point of Proposition 2.7, we know that by going upward from y we cross
some W ss(pσi ), for some 1 6 i 6 2nσ. Therefore, by going upward from f−n(y)
we cross the rectangle of linearisation associated with pσi , and hence the stable leaf
W ss(pσi ) at some point yu.

Let δ be the modulus of absolute continuity of f−n associated with ε. By density
of the unstable leaf of pσi , we can chose a point z such that d(fn(z), fn(y)) <
min(δ, δσ/4) so that by going upward from fn(z) we cross W ss(pσi ) at some point
zu, at distance less than δ from yu. Finally, the point f−n(zu) ∈W ss(pσi )∩W su(pσi )
is at distance less than 3ε from x. �

Finally, we explicit stable and unstable foliations such that the set K is hyper-
bolic with respect to f . To do this, we compute a vector field that is uniformly
contracted by the differential of f .

Theorem 2.9. The set K is hyperbolic. The invariant distributions are Eu(x) =
Rev and Es(x) = Rvs(x), where

vs(x) := eh −
∑
i>0

λ−ib(f i(x))

i∏
j=0

1

a(f j(x))
ev,

with a(x) := 〈dxf · eh, eh〉 and b(x) := 〈dxf · ev, eh〉. In particular, vs satisfies
df vs = λ−1vs ◦ f on K.

Proof. We will explicit the stable and the unstable directions of the splitting of the
tangent space. Write the differential of f at x ∈ Sg r Σ in the basis (eh, ev)

dxf =

(
a(x) b(x)

0 λ−1

)
.

Therefore, for every positive integer n, we have the following,

dx(fn) = dfn−1(x)f · · · df(x)f dxf,

=

(
a(fn−1(x)) b(fn−1(x))

0 λ−1

)
· · ·
(
a(f(x)) b(f(x))

0 λ−1

)(
a(x) b(x)

0 λ−1

)
,

=

(
An(x) Bn(x)

0 λ−n

)
.
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We have that An(x) =
n−1∏
i=0

a(f i(x)). We compute Bn explicitly. This sequence

satisfies a recursive formula, which can be solved

Bn+1 − a(fn)Bn = λ−nb(fn),

Bn+1/An+1 −Bn/An = λ−nb(fn)/An+1,

Bn/An =

n−1∑
i=0

λ−ib(f i)/Ai+1.

Finally we get

Bn
An

(x) =

n−1∑
i=0

λ−ib(f i(x))

i∏
j=0

1

a(f j(x))
.

We can now explicit the eigenvectors of dx(fn). The obvious one, associated
with the eigenvalue An(x), is ev. The other one is

vn(x) =

(
−Bn(x)/An(x)
1− λ−n/An(x)

)
=

−
n−1∑
i=0

λ−ib(f i(x))
i∏

j=0

1
a(fj(x))

1−
n−1∏
i=0

1
λa(fi(x))

 .

We now study the convergence of the vn’s as n goes to infinity. First, since a > 1,
b are continuous functions over the compact set K, there exist constants a∗ and C
such that a > a∗ > 1 and |b| < C. Therefore, the second coordinate converges to 1
as n goes to infinity. For the first coordinate, we have the uniform bound over K

n−1∑
i=0

∣∣∣∣∣∣λ−ib(f i(x))

i∏
j=0

1

a(f j(x))

∣∣∣∣∣∣ 6 C
n−1∑
i=0

(λa∗)−i 6 C
λa∗

λa∗ − 1
.

Hence, the series of continuous functions converges uniformly overK to a continuous
function. Call vs the limit of vn as n goes to infinity.

A short computation shows that for all x in K, vs satisfies dxf · vs(x) =
λ−1vs(f(x)). Finally, we get the following splitting of the tangent space at each x
in K, TxSg = Rvs(x)⊕Rev, so that K is a hyperbolic set. �

3. Smoothness of the stable foliation and renormalized flow

In this section we prove that vs can be extended to the whole set SgrΣ of regular
points, such that the extension is still uniformly contracted by the action of f and
so that it is Lipschitz continuous. Under further assumption on the smoothness
of f , we prove that vs is C1. Furthermore, in view of the next section, we prove
that vs depends continuously on the parameter β – occuring in the construction of
f . This regularity property is a central point in the proof of the unique ergodicity
of the flow, which implies the mixing of f with respect to the very same invari-
ant measure thanks to the commutation relation between f and ht. Since vs is
Lipschitz continuous, it can be integrated into a continuous flow ht which enjoys a
nice commutation relation with f – in other words, f renormalizes ht. From the
properties of ht, we show that the set K is connected, transverse to any vertical
leaf, and that f is transitive with respect to the trace topology on K.
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3.1. Construction of a useful open cover of Sg. In order to proceed, we first
need to construct an open cover of Sg rΣ such that f satisfies some nice estimates
on elements of this cover. This is done in the following proposition.

Proposition 3.1. For all ε > 0 small enough, there exist η > 0, δ > 0, and an open
cover Sg = Aη ∪

⊔
σ∈Σ

Bσ,δ such that a > 1 +η on Aη and d(f(x), σ) < (1− δ)d(x, σ)

on Bσ,δ r {σ}.

Proof. By continuity of f , there exists an ε > 0 such that

{x ∈ Vσ | d(f(x), σ) < d(x, σ)} ⊃ B(σ, |pσ|) ∪
2nσ⋃
i=1

B(qσi , ε) =: Bεσ,

for all σ, where VΣ =
⊔
σ∈Σ

Vσ is the open neighbourhood of Σ on which f 6≡ ϕ.

Since Sg r
⊔
σ∈Σ

Bεσ is compact and a > 1 on it, there exists η > 0 such that

a > 1 + 2η on this compact set. Call Aη = {x ∈ Sg | a > 1 + η}. By construction,
Sg = Aη ∪

⋃
σ∈Σ

Bεσ.

Since all Bεσ are open sets, radial and centred on σ, we have Bεσ =
⋃
n>1

(
1− 1

n

)
Bεσ.

Now, by compactness of Sg, there exists n0 such that:

Sg = Aη ∪
⋃
σ∈Σ

(
1− 1

n0

)
Bεσ.

On a small open neighbourhood Wσ of σ, by construction of f we have that

d(f(x), σ)/d(x, σ) < C < 1. Now, on the compact set (1− 1
2n0

)Bεσ r Wσ, the

continuous function d(f(x), σ)/d(x, σ) is positive and strictly bounded from above
by 1. On the other hand, up to shrinking Wσ, the function d(f(x), σ)/d(x, σ) is

bounded on Wσ r {σ} by max(λ−1, λ+ βσ + δ̃) < 1, for some small δ̃ > 0. Hence,
there exists δ > 0, independent of σ, such that for all x in (1 − 1

n0
)Bεσ r {σ},

d(f(x), σ) < (1− δ)d(x, σ). We then call Bσ,δ = (1− 1
n0

)Bεσ. �

3.2. Lipschitz extension of vs to Sg r Σ. Here we prove that the infinite sum
in the definition of the vector field vs on K does converge on all Sg rΣ. This way
we can define vs on Sg rΣ. Furthermore, we prove that this extended vector field
is Lipschitz continuous.

We proceed in two steps. First we show that vs is bounded and continuous on
SgrΣ. To do this, we need several lemmas which follow directly from computation
of df .

Lemma 3.2. The partial derivative b = 〈df(ev), eh〉 of f is locally Lipschitz in
some neighbourhood of Σ. Furthermore, by continuity we can set b(σ) = 0 for each
σ ∈ Σ.

Lemma 3.3. On each basin Uσ, the partial derivative a = 〈df(eh), eh〉 of f is
bounded from below by λ+ βσ.

Theorem 3.4. If βσ ∈ ]− λ+ λ−2,−λ+ 1[ for all σ in Σ, then the vector field vs

is bounded and continuous on Sg r Σ. Furthermore, by construction, the formula
df(vs) = λ−1vs ◦ f holds on Sg r Σ.
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Proof. Call si = λ−i b ◦ f i
i∏

j=1

1
a◦fj . Let V be a neighbourhood of some σ such

that b is Lipschitz on it and f contracts by a factor max(λ−1, λ + βσ + δσ) < 1.
Without loss of generality, we assume that V is a ball centred at σ of radius ε and
that f(V ) ⊂ V . Since Uσ =

⋃
N>0

f−NV , for all x ∈ Uσ there exist some N = N(x)

and an integer nV which only depends on V , such that for all n > N , fn(x) ∈ V ,
at most nV points of the orbits fall into Bσ,δ r V and the rest lives in Aη.

Let x ∈ Uσ, x 6= σ. Since Uσ =
⋃
n>0

f−nV , let N be the smallest integer such

that fN (x) ∈ V . We distinguish three cases :

• i 6 N − nV . Therefore |si(x)| 6 λ−i
(

1
1+η

)i+1

sup |b|.

• N − nV < i 6 N . Hence |si(x)| 6 λ−i
(

1
1+η

)N−nV (
1

λ+β

)i−(N−nV )

sup |b|.

• i = j + N > N . We get |si(x)| 6 λ−(j+N)
(

1
λ+β

)j+N
Lip(b)εmax(λ−1, λ +

βσ + δσ)j .

Therefore, if λ−2 < λ+ βσ, then∑
i>0

|si(x)| 6 sup |b| λ(1 + η)

λ(1 + η)− 1

(
1 +

nV∑
i=0

(
1

λ+ β

)i)
+

Lip(b)ε

1− max(λ−1,λ+βσ+δσ)
λ(λ+βσ)

,

which is uniform in x on Uσ. Hence, the convergence is uniform on the compact
subsets of Uσ r {σ} and

∑
si is continuous on Uσ r {σ}, for all σ ∈ Σ.

We now show that this function defined on UΣ = tUσ can be extended by
continuity on K. Call u(x) = eh −

∑
i>0

si(x)ev the vector based at x ∈ Sg r Σ.

Let x ∈ K and, by density of U in Sg, (xn)n ∈ UN such that xn → x as n goes
to infinity. Since (u(xn))n is bounded, up to extracting, the sequence converges to
some u0. Furthermore, by a diagonal argument and up to extracting, u(fk(xn))→
uk for all k ∈ Z as n goes to infinity. Now, by construction of u, df(u) = λ−1u ◦
f . Hence, by continuity of f and df , dx(fk)(u0) = λ−kuk. We now show that
u0 = vs(x). By hyperbolicity of K, there exist real numbers xs, xu such that
u0 = xsv

s(x) + xuev. Therefore, by hyperbolicity of K,

|xu| = ||xuev||,

= ||dfk(x)f
−kdxf

kxuev||,

6 C( 1
a∗

)k||dxfkxuev||,

= C( 1
a∗

)k||dxfk(u0 − xsvs(x))||,

6 C( 1
a∗

)kλ−k(sup ||u||+ xs sup ||vs||),

which goes to zero as k goes to infinity. Hence u0 = xsv
s(x). Now both u0

and vs(x) have the same non-zero coordinate along ev in the base (ev, eh). Hence
u0 = vs(x). Finally, u extends continuously on K by vs. We call vs this vector
field on Sg r Σ. �

We can now present the proof of the Lipschitz continuity of vs on SgrΣ. To this
end, we need a few more estimates on the differential of f and on its coefficients.
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Lemma 3.5. For all x ∈ Sg r Σ, we have the following estimate || dxfn||
An(x) 6

2 max
(

1, |Bn|(x)+λ−n

An(x)

)
. In particular, || dfn||/An is bounded on

n⋃
i=0

f−iAη. Fur-

thermore, the bound B can be chosen independently of n.

Proof. By a direct computation, for (u, v) := ueh + vev

|| dxfn(u, v)||2 = (An(x)u+Bn(x)v)2 + (λ−1v)2,

6 4An(x)2u2 + (4Bn(x)2 + λ−2n)v2,

6 4 max(An(x)2, Bn(x)2 + λ−2n)||(u, v)||2.

For x ∈
n⋃
i=0

f−iAη, we know that λ−k/Ak(x) < (λ(1 + η))−k and that −Bn/An is

the partial sum of
∑
si, hence uniformly bounded. �

The following lemma is a direct consequence of the Lipschitz continuity of k′

intervening in the construction of f .

Lemma 3.6. The functions a and 1
a are Lipschitz continuous on Sg.

Theorem 3.7. If βσ ∈]− λ+ λ−2,−λ+ 1[ for all σ in Σ, then the vector field vs

is Lipschitz continuous on Sg r Σ.

Proof. Since all of the partial sums of
∑
si are Lipschitz continuous, we give sum-

mable estimates of local Lipschitz constants. Let x ∈ Uσ. Let V , N = N(x) and
nV be as in the proof of Theorem 3.4. Therefore Uσ =

⋃
n>0 f

−nV . We use the

notation Lipx(g) to indicate the local Lipschitz constant of a function g in at least
one neighbourhood of x.

Let ε > 0. On a small enough neighbourhood of x, we have that Lipx(f j) 6
(1 + ε)||dxf j || and sup 1

Aj
6 (1 + ε) 1

Aj(x) for all j 6 i. We distinguish the three

following cases:

• i 6 N − nV . We have directly that,

Lipx(si) 6 λ
−i

Lip(b) Lip(f i) sup 1
Ai

+ sup(b ◦ f i) Lip 1
a

i∑
j=0

Lip(f j) sup 1
Aj−1

sup
Aj
Ai

 ,

6 λ−iB(1 + ε)2

Lip(b) + sup |b| Lip 1
a sup(a)

i∑
j=0

(
1

1 + η

)j ,

6 C⊥⊥i,N,x λ
−i,

where C⊥⊥i,N,x stands for a constant independent of i, N and x.
• N − nV 6 i < N . Up to multiplying some part of the above estimate by

( 1
λ+βσ

)nV , we have:

Lipx(si) 6 C⊥⊥i,N,x λ
−i.
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• i = l +N > N . In this case, the following estimates hold:

Lipx(b ◦ f l+N ) sup
1

Al+N
6 Lip(b) Lip(fN ) sup

1

AN
LipfN (x)(f

l) sup
AN
Al+N

,

6 Lip(b)(1 + ε)2 ||dxfN ||
AN (x)

max(λ−1, λ+ βσ + δσ)l
(

1

λ+ βσ

)l
,

6 C⊥⊥x,i,N max

(
λ−1

λ+ βσ
, 1 +

δσ
λ+ βσ

)l
.

sup(b ◦ f l+N ) Lipx
1

Al+N
6 εmax(λ−1, λ+ βσ + δσ)l Lip 1

a

N−1∑
j=0

Lip(f j) sup
1

Aj−1
sup

Aj
Al+N

+
l∑

j=0

Lip(fN ) LipfN (x)(f
l) sup

1

AN
sup(a) sup

AN
Al+N

 ,

6 εmax(λ−1, λ+ βσ + δσ)l Lip 1
aC⊥⊥x,i

(
1

η
+ nV

(
1

λ+ βσ

)nV
+ sup(a)

l∑
j=0

max

(
λ−1

λ+ βσ
, 1 +

δσ
λ+ βσ

)j .

These two bounds are independent of N , hence of x.

By setting βσ ∈ ]−λ+λ−2,−λ− 1[, all the bounds on Lipx(si) decay geometri-
cally. Hence all partial sums of

∑
si share a common Lipschitz constant near each

point of U , independent of the base-point.
We give now some estimates when x ∈ K. Therefore fn(x) ∈ Aη for all n. The

following estimate holds:

Lipx(si) 6 λ
−i

Lip(b) Lip(f i) sup
1

Ai
+ sup |b| Lip

(
1

a

) i∑
j=0

Lip(f j) sup
1

Aj−1
sup

Aj
Ai

 ,

6 λ−i(1 + ε)2B

Lip(b) + sup |b| sup(a) Lip

(
1

a

) i∑
j=0

(
1

1 + η

)j ,

6 C⊥⊥x,i λ
−i.

Finally, every partial some of
∑
si shares a common Lipschitz constant on SgrΣ.

Therefore vs is Lipschitz continuous on Sg r Σ. �

3.3. Differentiability of vs. Here we prove that when the function k is C2, the
stable vector field vs is C1. In order to prove this result, we use similar computations
as in the proof of Theorem 3.7 and show that vs is differentiable on every compact
set of U and on K. We then use the relation df vs = λ−1vs ◦ f (more precisely,
the differential of this relation) in order to prove that there is a unique extension
of dvs from U to Sg r Σ, and it coincides with dvs on K.

Theorem 3.8. If the function k : R→ R in the construction of f is also C2, then
the vector field vs is C1.

Corollary 3.9. If k is C2, then ht is a C1 flow.
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Proof. From the same estimates as in the proof of Theorem 3.7, we get that the
series of differentials

∑
i>0

dsi converges uniformly on K and on compact subsets of

U rΣ. By uniform converge, vs is therefore differentiable on K and on U rΣ, but
we still need to prove that x 7→ dxv

s is continuous on Sg r Σ. To this end, we use
the fact that vs is uniformly contracted by f .

By design, vs satisfies the equality dxf v
s(x) = λ−1vs(f(x)) for all x /∈ Σ. Now,

by differentiation, we get for all x in U

d2
xf(vs(x), ·) + dxf dxv

s = λ−1df(x)v
s dxf.(3.1)

Let x ∈ K and (xn)n be a sequence in U converging to x as n goes to infinity.
By the Arzelà–Ascoli theorem, in order to prove that (dxnv

s)n converges to dxv
s,

it is sufficient to prove that (dxnv
s)n has a unique subsequential limit.

To be exact, in order to apply the Arzelà–Ascoli theorem, we need the maps to
have a compact domain. We address this problem by associating to any linear map
l : Rd → Rd its restriction to the unit sphere l̃ : Sd−1 → Rd, in addition with the
closed condition

||x+ θy|| l̃
(

x+ θy

||x+ θy||

)
= l̃(x) + θl̃(y), x, y ∈ Sd−1, θ ∈ R.(3.2)

Now, any linear map can be built from a map on the sphere satisfying the condition
(3.2). This one-to-one correspondence is enough to overcome the issue of non-
compactness of the domain.

Let ux be a subsequential limit of (dxnv
s)n. Using (3.1) and the fact that f is

C2, we also get a subsequential limit uf(x) of (df(xn)v
s)n. By the same process, we

get for all integer k a subsequential limit ufk(x) of (dfk(xn)v
s)n so that

d2
fk(x)f(vs(fk(x)), ·) + dfk(x)f ufk(x) = λ−1ufk+1(x) dfk(x)f.

Taking the difference with (3.1) we get, after induction, that for all integer k

dxf
k(dxv

s − ux) = λ−k(dfk(x) − ufk(x))dxf
k(3.3)

We now prove that the difference α0 := dxv
s − u is the zero map. First, notice

that since vs(x) = eh − (Σisi(x))ev, we must have Im(dxv
s) ⊂ Rev = Eu(x) and,

by taking limits, Im(ux) ⊂ Eu(x). Therefore Im(α0) ⊂ Eu(x). Since vs is Lipschitz
continuous, the operators dfk(x)v

s−ufk(x) are uniformly bounded. Therefore, from
the hyperbolicity of K and the relation (3.3), we get that α0(Rvs(x)) ⊂ Rvs(x),
and so α0(vs(x)) = 0. Since (vs(x), ev) is a basis of R2, there exists some real
number α such that α(ev) = αev. Applying (3.3) to ev, we get that

0 = (αId− λ−k(dfk(x)f − ufk(x)))dxf ev.

If α is not zero, then for large enough value of k the map (Id − λ−k

α (dfk(x)f −
ufk(x)))dxf is invertible, hence a contradiction. Therefore α = 0 and u = dxv

s.
Finally, we get that x ∈ U r Σ 7→ dxv

s extends continuously, in a unique fashion,
to Sg r Σ. �

3.4. Continuity of vs with respect to β. In the next section we prove that ht is
uniquely ergodic and that f is mixing with respect to the invariant measure of ht.
To do so, we first prove that the family of vector fields vs is smooth with respect
to the amplitude parameter β in the definition of f .
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We will use the following notations. For all β = (βσ)σ∈Σ, write fβ the function
f with the amplitude parameter β, and vsβ its corresponding vector field. We also

assume the parameter (ασ)σ∈Σ to be fixed.
In this section, we only consider the case #Σ = 1, hence the vector β has only

one component. The general case leads to very similar computations.
More precisely, we prove the following theorem.

Theorem 3.10. The map β ∈ ]− λ+ λ2, 0] 7→ vsβ is continuous for the sup-norm.

As a consequence, the function (x, β) 7→ vsβ(x) is continuous on (Sg r Σ)× ]− λ+

λ−2, 0].

To show this continuity, we split the domain into three subsets. We will need
the following lemma.

Lemma 3.11. For all β in ]− λ+ λ−2, 0], the eigenspace of (fβ)∗ := (dfβ)−1 Ufβ
associated with the eigenvalue λ is of dimension one when acting on the space of
bounded and continuous vector fields on the tangent vector bundle of Sg rΣ, where
Uf stands for the Koopman operator of f .

Proof. Let β ∈ ] − λ + λ−2, 0]. Let w be a vector field in the eigenspace of (fβ)∗
associated with the eigenvalue λ. In other words, w is such that dxfβ(w(x)) =
λ−1w(fβ(x)), for all x. Now, since vs is continuous, non vanishing and transverse
to ev, there exist two functions w1 and w2 uniquely determined such that w(x) =
w1(x)vs(x) + w2(x)ev for all x. These two functions are bounded and continuous.
Hence, we have,

dxfβ(w2(x)ev) = a(x)w2(x)ev = dxfβ(w(x)− w1(x)vs(x)),

= λ−1(w(fβ(x))− w1(x)vs(fβ(x))),

w(fβ(x)) = w1(x)vs(fβ(x)) + λa(x)w2(x)ev.

Therefore, w1 is invariant by fβ and for all i > 0,

w2(x) =

i−1∏
j=0

1

λa(f jβ(x))
w2(f iβ(x)).

By continuity of w2 and compactness of Sg, w2 is bounded. Now, we distinguish
two cases in order to prove that w2 = 0.

For βσ < 1 − λ, there exists a fixed point pσi , in K, whose unstable leaf is
dense. Since at this point a(pσi ) > 1, by continuity of a, we get that a > 1 in a
neighbourhood of pσi , hence 1/(λa) < λ−1 < 1 and w2 = 0.

For 1 − λ 6 βσ 6 0, we know that the unstable leaf of σ is dense in Sg. By
continuity on every leaf of the branched cover at σ, we can set a(σ) = λ+ βσ > 1.
Hence, in a neighbourhood of σ, we get 1/(λa) 6 λ−1 < 1, hence w2 = 0.

In order to prove that w1 is constant, we also distinguish two cases.
For βσ < 1− λ, the unstable leaf of each pσi is dense. Hence w1(x) = w1(pσi ) for

all x. Hence the claim in this case.
For 1 − λ 6 βσ 6 0, the unstable leaf of σ is dense. Therefore, w1(x) = w1(σ)

for all x. Hence the claim. �

Proof of Theorem 3.10. We first prove that ||vsβ − vsβ0
||∞ −−−−→

β→β0

0 for all β0 in

]−λ+λ−2, 1−λ[. From proofs of Theorems 3.4 and 3.7, we can see that on a small
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enough neighbouhood B0 of β0, the vector fields vsβ are uniformly bounded, as well

as their Lipschitz constants. By the Arzelà-Ascoli theorem, the set {vsβ | β ∈ B0}
is relatively compact. Take a sequence of (βn)n converging to β0, then every sub-
sequential limit w of (vsβn)n must satisfies (fβ0

)∗w = λw. By Lemma 3.11, the
space of such vector fields is one dimensional, hence there exists a constant c such
that w = cvsβ0

. Since in the basis (eh, ev) all the component of vsβ along eh is 1,
we get that c = 1. Hence vsβn converges uniformly to vsβ0

, and so for all sequences

(βn)n. The rest of the claim follows directly by the triangle inequality and Lipschitz
continuity.

We now prove that ||vsβ − vsβ0
||∞ −−−−→

β→β0

0 for all β0 ∈ [1 − λ, 0]. The same

argument as in the case above holds. Indeed, for all β ∈ [1− λ, 0] we get

∑
i>0

∣∣∣∣∣∣λ−ibβ ◦ f iβ
i∏

j=0

1

aβ ◦ f jβ

∣∣∣∣∣∣ 6 1

1− λ−1
||bβ ||∞.

Hence vsβ is uniformly bounded for β in a neighbourhood of β0. Similarly, the
following estimate on the Lipschitz constant holds for all ε > 0

∑
i>0

Lipx

λ−ibβ ◦ f iβ i∏
j=0

1

aβ ◦ f jβ

 6 (1 + ε)2||vsβ ||∞
∑
i>0

λ−i
(

Lip(bβ)

+ i Lip

(
1

aβ

)
||aβ ||∞||bβ ||∞

)

Finally, we prove that ||vsβ−vs1−λ||∞ −−−−−−−→
β→(1−λ)−

0. Recall notations from Propo-

sition 3.1 and let V be a neighbourhood of some σ ∈ Σ as in the proof of Theorem
3.4. Let x ∈ f−N (V ) ∩ Uσ and let n(x) be the number of points in the orbit of x
that belong to Bσ,δ r V . Then N − n(x) > 0 and we have the following estimates
depending on i:

• if i 6 N − n(x), then |si(x)| 6 λ−i
(

1
1+η

)i+1

sup |b|.

• if N − n(x) < i 6 N , then |si(x)| 6 λ−i
(

1
1+η

)N−n(x) (
1

λ+β

)i−(N−n(x))

sup |b|

so that |si(x)| 6 sup |b|λ−i
(

1
λ+β

)i
.

• if i = j + N > N , then |si(x)| 6 λ−(j+N)
(

1
λ+β

)j+N
Lip(b)εmax(λ−1, λ +

βσ + δσ)j .

Therefore,
∑
i>0

|si(x)| 6 ||b||∞
(

λ
λ−1 + λ(λ+β)

λ(λ+β)−1 + ε Lip(b)

1−max(λ−1,λ+β+δ)
λ(λ+β)

)
, and so for

all ε > 0.
Hence, the family of vector fields (vsβ)β is uniformly bounded on Sg and the

bound can be chosen uniformly in β for β ∈ [1 − λ − ε, 1 − λ]. However, the
estimates we had on the Lipschitz constants are no longer good enough to apply
the same argument as in above cases.

Let x ∈ Sg and (xn, βn)n be a sequence converging to (x, 1 − λ) and such that
βn < 1−λ for all n. For n large enough, the sequence (vsβn(xn))n is bounded and let
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w(x) be a sub-sequential limit. Since for all k > 0, the sequence (vsβn(fkβn(xn)))n
is bounded, by a diagonal argument we can assume up to extracting that the
sequences converge to some vectors w(fk1−λ(x)). By continuity of dfβ in β, we get

that dxf
k
1−λw(x) = λ−kw(fk1−λ(x)) for all k. By expressing vectors w(fk1−λ(x)) in

the basis (vs1−λ(x), ev), we see that w(x) ∈ Rvs1−λ(x). Since each vector of the

form vsβn(fkβn(xn)) has a component equal to 1 along ev in the basis (eh, ev), we get

w(x) = vs1−λ(x). Hence (x, β) 7→ vsβ(x) is continuous at (x, (1− λ)−).

Now, suppose that ||vsβ−vs1−λ||∞ does not converge to zero as β converges to 1−λ
from below. Then, there exists some positive ε and sequences (βn)n and (xn)n such
that lim

n→∞
βn = (1− λ)− and ||vsβn(xn)− vs1−λ(xn)|| > ε. Up to extracting, we can

assume that (xn)n converges to some x. Therefore ||vsβn(xn)− vs1−λ(x)|| > ε/2 for

large enough n. This contradicts the continuity of (x, β) 7→ vsβ(x) at (x, (1− λ)−).

The continuity of (x, β) 7→ vsβ(x) on (Sg r Σ)×]− λ+ λ2, 0] follows from

||vsβ(x)− vsβ0
(x0)|| 6 ||vsβ − vsβ0

||∞ + ||vsβ0
(x)− vsβ0

(x0)|| −−−−−−−−−→
(x,β)→(x0,β0)

0.

�

3.5. Renormalized flow and topological properties of K. Since vs is Lips-
chitz continuous, we can integrate it into a flow ht. Since some trajectories reaches
in finite time conical points, for which vs is not defined, this flow must be treated
carefully. On the other hand, since vs is uniformly contracted by the action of f ,
ht is renormalized by f . From this relationship between f and ht, we can deduce
further topological properties about stable leaves and the set K. We first prove
that for each fixed hyperbolic point pσi , its stable leaf coincides with the orbit by ht
of this point. From this fact and Proposition 2.8, we deduce that K is transverse to
any vertical leaf. We then show that K is in fact equal to the closure of the stable
leaf of any hyperbolic fixed point pσi , hence K is connected. Finally, we prove that
f is topologically transitive with respect to the trace topology of Sg on K.

Proposition 3.12. For all x ∈ Sg r Σ and t for which ht(f(x)) is well defined, f
and ht satisfy the relation,

f ◦ hλt(x) = ht ◦ f(x).

Proof. Since dxf(vs(x)) = λ−1vs(f(x)), for x ∈ Sg r Σ, notice that,

d

dt
(f ◦ hλt(x)) = dhλt(x)f

(
d

dt
hλt(x)

)
= dhλt(x)f(λvs(hλt(x))) = vs(f ◦ hλt(x)).

Therefore the two functions t → f(hλt(x)) and t → ht(f(x)) solve the same dif-
ferential problem with the same initial condition. Hence f ◦ hλt = ht ◦ f for all t
where the solution is defined. �

This commutation relation between f and ht is a central argument throughout
the rest of this article. First, it is used to prove that the set K is invariant by the
flow. To this end, we have to verify that the flow is complete on K.

Let F := Sg r (Σ ∪ {x ∈ Sg r Σ | ∀t ∈ R, ht(x) exists}) be the set of points
whose trajectory are not well defined for all time. We can fully caracterise this set,
this is the subject of the following lemma.
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Lemma 3.13. If x ∈ F , then there exist σ ∈ Σ and t0 ∈ R such that ht(x) → σ
as t tends to t0

Proof. By compactness of Sg, up to taking a sub-sequence (tn)n that converges to
t0, the limit of (htn(x))n exists. If this limit doesn’t belong to Σ, we can extend
the solution past t0. �

Proposition 3.14. The orbit {ht(x)} of any point x in K is well defined for all
time t. Furthermore, for all t ∈ R, ht(K) = K.

Proof. We prove that F ⊂ U . By contradiction, let x ∈ F ∩K. Let t0 and σ be
as in Lemma 3.13. Hence, the smooth curves fn ◦ ht(x) : t ∈ [0, to] → Sg join K
to Σ and their lengths are less than λ−nt0||vs||∞. This contradicts the fact that
d(K,Σ) > min{|pσ| | σ ∈ Σ} > 0 by Proposition 2.4.

Since F∩K = ∅, ht(x) is well defined for all x ∈ K and all time t. Let x ∈ K. By
contradiction, assume there exists t1 such that ht1(x) ∈ U . Therefore fn(ht1(x))
converges to some σ as n goes to infinity and the curves fn ◦ht(x) : t ∈ [0, t1]→ Sg
joins K to some arbitrarily close point to σ for n large enough. Since such a curve
is of length at most λ−nt||vs||∞, it contradicts d(K,Σ) > 0. �

We can now deduce the announced topological properties of the invariant leaves
and of K.

Proposition 3.15. For all pσi , we have the equality of sets W ss(pσi ) = hR(pσi ).

Proof. Let t ∈ R. Hence fn(ht(p
σ
i )) = hλ−nt(p

σ
i ) converges to pσi as n goes to

infinity. Hence hR(pσi ) ⊂ W ss(pσi ). By the commutation relation between f and
ht, we get that hR(pσi ) is invariant by f . In the linearisation near pσi given by the
Grobman–Hartman theorem, the only invariant part by f corresponds to a small
piece γ of the stable leaf of pσi . By invariance of hR(pσi ) by f , we get γ ⊂ hR(pσi ).
Finally, since W ss(pσi ) =

⋃
n>0 f

−n(γ), we get hR(pσi ) = W ss(pσi ). �

Corollary 3.16. The set K is transverse to any vertical leaf.

Proof. Since the convergence of the infinite sum defining vs is uniform on K, the
vertical component of the vector field vs is continuous, hence bounded. Therefore,
all the stable leaves W ss(pσi ) are transverse to any vertical leaf. The result holds
by taking the closure since slopes are bounded and by Proposition 2.8. �

Theorem 3.17. The set K is connected and it can be written as K = W ss(pσi ),
for any σ ∈ Σ and any 1 6 i 6 2nσ.

Proof. Let σ1, σ2 ∈ Σ and i1, i2 be two integers. For simplicity, call p1 = pσ1
i1

and
p2 = pσ2

i2
. Let W2 be the open set given by the Grobman–Hartman theorem –

without loss of generality we assume it is a rectangle with horizontal and vertical
sides. Since W su(p2) contains a dense vertical leaf, and W ss(p1) is transverse
with all vertical leaves, the intersection W su(p2) ∩ W ss(p1) is non-empty. Let
x ∈W su(p2)∩W ss(p1) and let γ be a small connected piece of W ss(p1) containing
x in its interior. Then, for large enough n > 0, we see that f−n(γ)∩W2 accumulates

on W ss(p2)∩W2. Therefore, W ss(p2)∩W2 ⊂W su(p2) ∩W ss(p1) ⊂W ss(p1). Since

W ss(p1) is invariant by the action of f and W ss(p2) =
⋃
n>0

f−n(W ss(p2)∩W2), we

get the inclusion W ss(p2) ⊂ W ss(p1). Since the choice of p1 and p2 is arbitrary,
the result follows from Proposition 2.8. �
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Theorem 3.18. The function f : K → K is transitive with respect to the trace
topology of Sg on K.

Proof. Let U1 and U2 be open sets in Sg that have non-empty intersection with K.
Let p1 = pσ1

i1
and p2 = pσ2

i2
for some σ1, σ2 ∈ Σ such that Ui∩(W ss(pi)∩W su(pi)) 6=

∅ for i = 1, 2. Since W ss(p2) is transverse with all the vertical leaves, we can find
a rectangle V2 contained in U2 whose sides are vertical and horizontal, such that
W ss(p2) crosses V2 from side to side.

By density of W su(p1), there exists x2 ∈ V2 ∩W su(p1). Let W1 be the open
set of linearisation near p1 – without loss of generality, we can assume W1 to be
a rectangle with horizontal and vertical sides. For large enough n > 0, the set
f−n(V2) crosses horizontally W1.

Let x1 ∈ U1 ∩W ss(p1) and ε > 0 be such that the vertical segment γ of length
ε, containing x1 in its interior, is contained in U1. For all large enough m > 0, the
line fm(γ) crosses vertically W1. Hence fm(U1) ∩ f−n(U2) 6= ∅. �

It easily follows from the transitivity of f and the closing lemma that periodic
points of f are dense in K. Therefore K is an Axiom A attractor in the sense of
[24].

Theorem 3.19. If Σε is an open ε-neighbourhood of Σ for some small enough
ε > 0, U := Sg r Σε and f−1 is C2 away from Σ, then K is an Axiom A attractor
for f−1 : U → U .

4. Each f is mixing

In this part we prove that there exists a measure with respect to which f is
mixing. To do so, we first claim that the unique ergodicity of ht is a sufficient
condition for the mixing f and that f is mixing with respect to the unique invariant
measure of ht. We then prove that ht is indeed uniquely ergodic, with the support
of its unique invariant measure being exactly K.

Theorem 4.1. The flow ht is uniquely ergodic. Furthermore the support of the
invariant measure is K.

Corollary 4.2. The unique invariant measure µ of ht is also invariant by f and
f is mixing with respect to µ.

This corollary is a partial restatement of Theorem 1.1.

Proof. Since K is invariant by f and by the flow ht and since ht is well defined for
all t on K, we have

f∗µ = f∗((ht)∗µ) = (f ◦ ht)∗µ = (hλ−1t)∗(f∗µ).

Therefore the measure f∗µ is invariant by the flow ht. By unique ergodicity of the
flow, we must have f∗µ = µ.

Let F ∈ L2(µ) be such that
∫
F dµ = 0. We now prove that the sequence

(F ◦ fn)n weakly converges to zero. By invariance of the measure, the sequence
is bounded in the L2(µ) norm. By the Banach-Alaoglu-Bourbaki theorem, this
sequence lives in a weakly compact set. Let F̄ be a sub-sequential weak limit
of (F ◦ fn)n and let (nk)k be a strictly increasing sequence of integers such that
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F ◦ fnk −−−−⇀
k→∞

F̄ . On the other hand,

||F ◦ fnk ◦ ht − F ◦ fnk ||L2 = ||F ◦ hλ−nk t ◦ fnk − F ◦ fnk ||L2 ,

= ||F ◦ hλ−nk t − F ||L2 −−−−→
k→∞

0,

where the final limit follows from the density of continuous functions in L2(µ). Now,
F ◦ fnk ◦ ht − F ◦ fnk converges weakly to F̄ ◦ ht − F̄ . The identification of the
strong limit with the weak limit gives F̄ ◦ht− F̄ = 0. By unique ergodicity of (ht)t,
F̄ is constant. By integration, this constant is zero. Hence all the sub-sequential
weak limit of (F ◦ fn)n are 0, which proves the mixing. �

In order to prove Theorem 4.1, we heavily rely on the semi-conjugacy theorem
from [27, Proposition 7], more precisely if an Interval Exchange Transformation
(IET) and a Generalized Interval Exchange Transformation (GIET) have the same
combinatorial datum and follow a same full path in the Rauzy diagram – when
renormalized by the Rauzy–Veech algorithm – then there exists a continuous, in-
creasing and surjective function that semi-conjugates the two transformations.

4.1. Construction of a GIET and ht as its suspension flow. Recall some
notation from Section 2.1. Let ϕ be the pseudo-Anosov map that we perturbed in
order to get f . By construction, ϕ fixes each conical point and each separatrix. Let
σ ∈ Σ be a conical point and γ0 be a segment of a vertical separatrix starting at σ
such that σ ∈ ∂γ0. From a general property of the pseudo-Anosov maps (see [19,
proposition 5.3.4]), there exists a decomposition in rectangles R0 = (R0

1, . . . , R
0
|σ|)

of S such that (up to shortening γ0) the bases of these rectangles form a partition
of γ0.

Denote by ∂vR0 (resp. ∂hR0) the vertical (resp. horizontal) components of⋃
i ∂Ri. By construction, ∂hR0 = γ0. Now, ∂vR0 is made of portions of trajectories

for the horizontal flow associate to ϕ that connect a conical point to γ0, but don’t
intersect γ0 at some other previous time.

Since the family of vector fields (x, β) 7→ vsβ(x) is continuous, we can deform by

some homotopyR0 intoRβ = (Rβ0 , . . . , R
β
|Σ|) while preserving the vertical direction,

where β is the amplitude of the perturbations in the construction of f . In more
details, the homotopy sends the portions of trajectories of the horizontal flow that
connect conical points to γ0, to the portions of trajectories of ht which contain a
conical point. Since the vector field vsβ has its horizontal component constant equal
to 1, these latter trajectories are the ones connecting conical points to γ, where γ is
a slightly longer or shorter copy of γ0. Since any two trajectories do not intersect,
these portions of trajectories of ht are still the shortest ones that connect conical
points to γ

Call T (resp. T0) the Poincaré first return map to γ (resp γ0) of ht (resp. of the
unit speed horizontal flow associate to ϕ). It is clear from the construction that T0

is an IET and that T is a GIET. Since for all β, the horizontal component of vsβ
is equal to one, both T and T0 have the same combinatorial data. Furthermore,
by construction, T and T0 have the same path in the Rauzy-graph – otherwise for
some parameter β∗ the GIET Tβ∗ induced by Rβ∗ would have a connection, which
corresponds geometrically to a side of a rectangle of Rβ∗ connecting a conical point
to another one: this is impossible since fβ∗ would contract this curve.
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Rectangle decomposition R0 Perturbed rectangle decomposition Rβ

Figure 2. Rectangle decompositions in the case of a flat genus
two surface. The pseudo-Anosov transformation on this surface is
explicited in the appendix of [25] as the composition of an upper
triangular matrix with its transpose matrix.

Graph of the IET associated to R0 Graph of the GIET associated to Rβ

Figure 3. Graphs on the induced IET and GIET induced respec-
tively by the rectangle decompositions in Figure 2 – both flows are
going “downward”.

Since foliations associated to a pseudo-Anosov have no closed leaf (see [13]), it
follows that T0 has no connection, hence, by [27], the path of T0 in the Rauzy
graph is full and so T0 and T are semi-conjugated by a continuous, increasing and
surjective function. Also, since T0 has no connection, it is minimal.

We summarize all this in the following proposition.
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Proposition 4.3. If σ is a conical point, there exist two portions of a same sep-
aratrix (both containing σ) γ0 and γ, and maps T : γ → γ, T0 : γ0 → γ0 such
that:

(i) T0 is an IET and T is a GIET,
(ii) T0 is the Poincaré first return map of the horizontal flow associated to ϕ,

(iii) T is the Poincaré first return map of the flow ht associated to f ,
(iv) T0 and T have the same combinatorial data, and the same path in the

Rauzy-graph,
(v) there exists a continuous, increasing and surjective function h such that

h ◦ T = T0 ◦ h.

4.2. Minimality of the flow on K. In this part we prove that the map T – from
which ht is the suspension flow – is minimal on its nonwandering set. To do so,
we rely on the analysis carried out in [27]. From this, we deduce that the flow ht
acts minimally on K – actually, we also prove that K is an attractor for positive
and negative times. This property will be useful to prove that the support of the
unique invariant measure of ht is K.

As in [27], define S(∞) as the union of the forward orbit of the discontinuity
points of T−1 and the backward orbits of the discontinuity points of T . Similarly,
define S0(∞) from the discontinuities of T0 and T−1

0 . By construction, h is an
increasing bijection from S(∞) to S0(∞).

Define Ω as the set of non-isolated points of S(∞). Clearly, Ω is a closed set. In
order to prove that T is minimal on Ω, we first need the following lemma.

Lemma 4.4. There exists a decomposition of Ω in closed sets Ω = Ω+ ∪ Ω− such
that T (Ω+) ⊂ Ω+ and T−1(Ω−) ⊂ Ω−.

Proof. Let S(∞)+ be the forward orbits by T of the discontinuity points of T−1 and
similarly S(∞)− be the set of the backward orbits by T of the discontinuity points
of T . By definition of S(∞), S(∞) = S(∞)+ ∪ S(∞)+. Define Ω± as the set of

non-isolated points of S(∞)±. These sets satisfy the conclusion of the lemma. �

Theorem 4.5. When restricted to the set Ω, T is minimal.

Proof. Let x be a point of Ω. Up to considering its backward orbit, we assume that
x ∈ Ω+. We want to prove that (Tn(x))n>0 is dense in Ω. By contradiction, let U
be an open set such that U ∩Ω 6= ∅ and Tn(x) /∈ U ∩Ω for all n. Since Ω+ is stable
by the action of T , we can relax the last condition by Tn(x) /∈ U for all n > 0.

Since U ∩Ω 6= ∅, U ∩Ω contains at least two different points of S(∞), therefore
h is not constant on U . Hence h(U) has a non-empty interior. Finally, since the
sequence h ◦ Tn(x) = Tn0 (h(x)) avoids an open set and T0 is minimal, we get a
contradiction. �

In order to prove that Ω is an attractor for both T and T−1, we need the following
three technical lemmas.

Lemma 4.6. The function h such that h ◦ T = T0 ◦ h is constant on the connected
components of γ r S(∞).

Proof. By contradiction, let ]j−, j+[ be a connected component of γrS(∞) on which
h is not constant. Therefore h(j−) < h(j+). By density of S0(∞) in γ0, there exist
infinitely many points of S0(∞) in the middle third segment of [h(j−), h(j+)]. Since
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h : S(∞)→ S0(∞) is a bijection, the image by h−1 of all these points of S0(∞) is
relatively compact in ]j−, j+[. Hence, there exist accumulation points of S(∞) in
]j−, j+[, which is a contradiction. �

Lemma 4.7. The connected components of γ r S(∞) are permuted without cycle
by T .

Proof. By construction of S(∞), T and T−1 are continuous on each connected

componant of γ r S(∞). If J is a connected componant of γ r S(∞), then it is

easy to see that T (J) is a subset of a connected componant of γrS(∞). The same
argument applied with T−1 proves that the connected componants are permuted
by the action of T .

By contradiction, let J be a connected component of γ r S(∞) and n > 0 be
such that TnJ = J . Therefore h ◦ Tn(J) = h(J) = {x} by the Lemma 4.6. Now
h◦Tn(J) = Tn0 (h(J)). Therefore x is a periodic point for T0, which contradicts the
minimality of T0. �

Lemma 4.8. The isolated points of S(∞) are wandering points.

Proof. Let x be an isolated point of S(∞). Therefore there exists an open set U

such that U ∩ S(∞) = {x}. Hence U r {x} = U1 t U2 is included in the union

of two connected components of γ r S(∞), which are wandering sets by lemma
4.7. Therefore, Tn(U r {x}) ∩ U 6= ∅ for only finitely many values of n. Now, if
Tn(x) ∈ U then Tn(x) = x and therefore h(x) is a periodic point of T0 which is
impossible. Finally, we proved that TnU ∩ U 6= ∅ for only finitely many values of
n, in other words x is a wandering point. �

Theorem 4.9. For every point x ∈ γ whose forward orbit is infinite, then the
ω-limit set of x satisfies ω(x) = Ω. The counterpart is true for infinite backward
orbits and α-limit sets. In other words, Ω is an attractor for the transformations
T and T−1.

Proof. We prove both inclusions. We start by showing that Ω ⊂ ω(x). By con-
tradiction, let y ∈ Ω such that y /∈ ω(x). Since ω(x) is a closed set, there exists
an open set U containing y such that U ∩ Ω 6= ∅ and U ∩ ω(x) = ∅. Therefore
Tn(x) /∈ U for large enough n. Since U ∩ Ω 6= ∅, U contains at least two distinct
points of S(∞). Since h is one-to-one on S(∞) and continuous on γ, the set h(U)
has a non-empty interior. Therefore the sequence Tn0 (h(x)) = h ◦ Tn(x) is dense
in γ0 (by minimality of T0) and avoids the set of non-empty interior h(U), hence a
contradiction.

We now prove that Ωc ⊂ ω(x)c. Let y be in Ωc. There are two cases. If

y ∈ γ r S(∞), then by Lemma 4.7 y is contained in a wandering interval: y
cannot be obtain as a limit point of an orbit by T , hence y /∈ ω(x). Otherwise,

y is an isolated point of S(∞). By contradiction, y ∈ ω(x) implies that y is a
non-wandering point, which contradicts Lemma 4.8. �

Theorem 4.10. The set Ω coincide with the non-wandering set Ω(T ) of T .

Proof. By minimality of T when restricted to Ω, we get Ω ⊂ Ω(T ). Since T per-

mutes the connected components of γrS(∞), all points of γrS(∞) are wandering

points. Therefore Ω(T ) ⊂ S(∞). Finally, by the Lemma 4.8 we can refined this
last inclusion by Ω(T ) ⊂ Ω. �
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Proposition 4.11. The sets Ω and K are related by Ω = γ ∩K.

Proof. Let p = pσi be in γ ∩ K. We know that hR(p) is dense in K, therefore
(Tn(p))n is dense in γ ∩ K. However, ωT (x) = Ω for all x ∈ γ, in particular for
x = p. Hence Ω = γ ∩K. �

Theorem 4.12. When restricted to K, the flow ht is minimal. Furthermore, the
set K is an attractor for the flow ht, for positive and negative times.

Proof. Let u : γ → R be the function giving the first return time in γ. This function
is bounded by some constant C. Clearly, we have the equality hR(Ω) = h[0,C](Ω)
and the left hand side is a closed set containing the orbit of p = pσi ∈ γ ∩ K =
Ω, hence h[0,C](Ω) = K. This last equality proves the minimality of (ht)t when
restricted to K.

From h[0,C](Ω) = K and Theorem 4.9, we obtain that every infinite forward
trajectory of ht accumulates on K. Similarly, every infinite backward trajectory of
ht accumulates on K. �

4.3. Proof of the unique ergodicity of ht.

Lemma 4.13. In the coordinates of the suspension, every ht-invariant measure µ
must be of the form dµ(x, t) = C dν(x) dLeb(t), for x ∈ γ, 0 6 t < u(x), some
constant C > 0 and some measure ν on γ, where u(x) is the time of first return to
γ of x and Leb is the Lebesgue measure.

Proof. Let π̃ : γ×R→ R be a covering map. The lift of ht is simply the unit speed
translation flow along the second coordinate. Let µ be an invariant measure for this
flow. Let µ̃ be a lift of µ to γ×R. Therefore µ̃ is invariant by translation along the
second coordinate. Hence µ̃ = Cν ⊗ Leb, where Leb is the Lebesgue measure and
ν(S) := µ̃(S × [0, ε]) is a measure on γ, for some ε > 0. Taking back the projection
by π̃, we get dµ(x, t) = C dν(x) dLeb(t), as long as ε < infx u(x). �

We can now prove the unique ergodicity of ht.

Proof of theorem 4.1. Let µ be a measure invariant by the flow ht. By Lemma 4.13,
we can find a constant C and a measure ν on γ such that dµ(x, t) = C dν(x) dLeb(t).
By applying Fubini’s theorem on sufficiently small rectangles, we obtain that ν is
invariant by T .

Since the horizontal foliation associated to a pseudo-Anosov map is uniquely
ergodic – see [14, Exposé 12] – it follows that T0 is uniquely ergodic.

Now, T and T0 have the same path in the Rauzy-graph. By [27], T is semi-
conjugated to T0 by some continuous monotonic function h. This function h is
bijective when restricted, up to a countable set of points, to the set of non-wandering
points of T . Therefore T is also uniquely ergodic, of invariant measure ν.

Hence ht is uniquely ergodic, of invariant measure µ.
We now prove that the support of µ is K. First, since supp(ν) is included in the

set of non-wandering points of T , which is Ω, and supp(ν) is a closed set invariant
by T , by minimality of T we get that supp(ν) = Ω. Now, by the factorization of µ
and the fact that hR(Ω) = K, we get supp(µ) = K. �

As a final remark for this section, we can perform a similar analysis by pertubing
a pseudo-Anosov only at some conical points Σ0 ( Σ. The proofs are mostly the
same by replacing Σ by Σ0.
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We give in Figure 4 a graphical representation of the set K in the case of the
fully explit example outlined in the description of Figure 2.

5. Perturbation at a regular periodic point

Because of the following general property concerning pseudo-Anosov maps – see
for example [13] – we can consider periodic points that are not conical points – they
are regular points.

Proposition 5.1. If ϕ : Sg → Sg, then the set of periodic points of ϕ is a dense
subset of Sg.

Let θ ∈ Sg r Σ be a periodic point of ϕ that is not a conical point. Up to
considering a power of ϕ, we assume that θ is a fixed point.

In this part, we present that a very similar analysis can be done when a pseudo-
Anosov map is perturbed at a fixed point that is regular instead of conical.

5.1. Definitions, regularity and first properties. We can proceed to the same
type of perturbation as described in Section 2.1 at a regular fixed point θ, except
that it is much easier to define since θ is not a conical point and we do not have to
deal with branched cover.

Write ϕ(x+ iy) = λx+ iλ−1y in some local chart centred at θ. In these coordi-
nates, define

f(x+ iy) :=

(
λ+ βk

(
x2 + y2

α

))
x+ iλ−1y,

for some β ∈] − λ,−λ + 1[, 0 < α < min
(

1
2Syst(Sg), inf{d(θ, σ) | σ ∈ Σ}

)
and

k : R→ R is an even unimodal function of class C1, compactly supported in [−1, 1]
such that k′ is Lipschitz continuous, for example k(r) = (1− r2)21[−1,1]. Set f = ϕ
elsewhere. With these parameters, f is regular in the following way.

Proposition 5.2. If β ∈ ]−λ, 0] and 0 < α < min
(

1
2Syst(Sg), inf{d(θ, σ) | σ ∈ Σ}

)
,

then f is a homeomorphism on Sg and is a diffeomorphism on Sg r Σ.

Also, for a refined condition on β, we get

Proposition 5.3. If β ∈ ]−λ,−λ+1[ and 0 < α < min
(

1
2Syst(Sg), inf{d(θ, σ) | σ ∈ Σ}

)
,

then θ is an attractive fixed point for f . Call Uθ its basin of attraction. Moreover
Uθ is an open set.

Define K := SgrUθ to be the complement of the basin of attraction of θ. Clearly,
K is a compact subset, invariant by f .

Our goal is to understand the dynamical behaviour of f on K – and near it.
First we need to give some more topological properties about the set K. The next
property also shows that K is not the empty set.

Proposition 5.4. If β ∈ ]−λ, 1−λ[ and α < δΣ/2, then there exist fixed hyperbolic
points pi, i ∈ {1, 2}, one on each vertical ray starting at θ. These two points are at
the same distance |p| from θ. Furthermore B(θ, |p|) ⊂ Uθ.

All the proofs of these properties are essentially the same as in Subsection 2.2.
In fact all the following properties are proved by very similar arguments – if not
the same – as their counterparts in the previous case of a perturbation at a conical
point.
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Proposition 5.5. The following properties, similar to the case studied in Sections
and 2 and 3, hold.

(i) the open set Uθ is dense in Sg.
(ii) The set K is hyperbolic. The stable vector field vs is given by the same

formula as in Theorem 2.9.
(iii) The formula giving vs on K still makes sense on Sg r Σ, and defines a

bounded Lipschitz continuous vector field, still noted vs, when β ∈ ] − λ +
λ−2, 0].

(iv) The flow ht generated by vs satisfies f ◦ hλt = ht ◦ f whenever both sides
are well defined.

(v) The set K is invariant by ht.
(vi) The set K is the closure of the trajectory of pi, i ∈ {1, 2}, under ht, in

fact K = W ss(pi) ∩W su(pi). Furthermore W ss(pi) = hR(pi), and so K is
connected.

5.2. Finer properties about dynamics of f and ht. Again, with almost the
same proof as Theorem 3.10, we can prove that

Proposition 5.6. The vector field vs = vsβ depends on β since f = fβ does.

Furthermore, the map (x, β) 7→ vsβ(x) is continuous on (Sg r Σ)×]− λ+ λ−2, 0].

From this last property, we can construct a rectangle decomposition of Sg in a
similar manner as previously. This time, the segment γ will start at θ. In order
to construct such a decomposition R, we start from a decomposition R0 – with
straights rectangles – associated to the horizontal flow and to a segment γ0 starting
at θ and included in a vertical leaf. To get R we deform R0 as described in 4.1.
These decompositions lead to the following proposition.

Proposition 5.7. Similarly to Section 4, the following properties hold.

(i) The flow ht induces a map T : γ → γ, which is the Poincaré first return map
of this flow. The map T is a GIET. By construction, ht can be recovered
by taking a suspension flow over T .

(ii) The horizontal (unit speed) flow induces a map T0 : γ0 → γ0, which is
the Poincaré first return map of this flow. The map T0 is an IET. By
construction, the horizontal flow can be recovered by taking a suspension
flow over T0.

(iii) The maps T and T0 have the same path in the Rauzy diagram. Furthermore
this path is full. Hence T is semi-conjugated to T0.

In a very similar fashion as in Subsections 4.2 and 4.3, since T0 is minimal and
uniquely ergodic, we can prove the unique ergodicity of ht and its minimality when
restricted to K. We sum up these results in the following theorem.

Theorem 5.8. As in Section 4, the dynamic of f and ht satisfies the following
properties.

(i) For every x in Sg r Σ such that its forward trajectory by ht is defined for
all times, its ω-limit set coincides with K, ω(x) = K. The same goes for
backward trajectories and α-limit sets.

(ii) The flow ht is uniquely ergodic, of unique invariant measure noted µ. By
uniqueness and the commutation property between ht and f , µ is also in-
variant by f .



28 JÉRÔME CARRAND

Figure 4. Numerical representations of the set K for a perturba-
tion of a pseudo-Anosov homeomorphism on a genus two surface.
Right: perturbation at the unique conical point. Left: pertur-
bation at a regular fixed point.

(iii) The map f is mixing with respect to µ.
(iv) The support of µ is exactly K.

6. The measure µ

In this last section, using extensively Bowen and Ruelle’s work [5, 24], we prove
that µ is the unique SRB-like measure of f−1, that correlations decrease exponen-
tially fast for C1 observables compactly supported away from Σ. Finally, using the
maximizing property associated with SRB measure, we compute the entropy of f
with respect to µ.

We used the term “SRB-like” instead of just “SRB” because SRB measure are
only defined for C2 (or C1+α) diffeomorphisms, but the above map f is only con-
tinuous at conical points. Nonetheless, we show that µ is the unique SRB measure
associated to f−1|SgrΣ and that the usual definitions of SRB measure extend to

f−1. We will therefore refer to SRB measure in the rest of this section instead of
“SRB-like” measure.

For now on, we assume that f is a C2 diffeomorphism away from Σ, which can
be achieved by choosing a C2 bump function k. Such a bump function k is also
assumed to be C2.

6.1. SRB measure and entropy of f−1. Sinai–Ruelle–Bowen measures are par-
ticular invariant measures of C2 transformations. See [28] for a survey about these
measures and which dynamical systems have them.

The problem here is that f and f−1 are smooth only away from conical points,
where they are only continuous. Still, Sg rΣ is an invariant set on which f−1 is a
C2 diffeomorphism. Furthermore, K is an Axiom A attractor for f−1, in the sense
that K is locally maximal, f−1|K is uniformly hyperbolic and f−1|K is topologically
transitive. Notice that K is connected.

By [24, Theorem 1.5], there exists a unique SRB measure µK supported by K,
maximizing hν(f−1|SgrΣ) +ν(− log det df−1|Es) – and the maximum is equal to 0.
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Theorem 6.1. If W is a curve of finite length contained in W ss(p) and containing
p, where p is some hyperbolic fixed point pσi of f , and νW is a measure on W
with bounded Radon-Nikodym derivative with respect to the measure induce by the
Riemann metric on W , then µ = lim

n→∞
(f−n)∗νW .

In particular, µ = lim
N→∞

1
N

N−1∑
n=0

f−n∗ νW and according to [28], µ is a SRB measure

for f−1|SgrΣ. Therefore, by uniqueness, µ = µK .

Proof. Let W ⊂ W̃ ⊂ W ss(p) be a strictly longer curve than W . Let ν̃ be the

measure on W̃ induced by the Riemann metric. By assumption there exists a
bounded function ρ > 0 such that dνW = ρdν̃. If needed, ρ is implicitly extended
by 0.

Since k is assumed to be C2, by Corollary 3.9, ht is a C1 flow. Therefore, for
small enough t, (ht)∗νW is supported by W̃ and

d((ht)∗νW ) =
ρ

Jacht
◦ h−t dν̃,

Where Jac ht is the Jacobian determinant of the time t of the flow. Therefore, if ϕ
is a continuous function on Sg, then for all small enough t,

|(ht)∗(f−n∗ νW )− (f−n∗ νW )|(ϕ) = |f−n∗ ((hλ−nt)∗νW − νW )|(ϕ)

6 |ϕ|∞
∫
W̃

∣∣∣∣ ρ

Jachλ−nt
◦ h−λ−nt − ρ

∣∣∣∣ dν̃,

which converges, by dominated converge, to zero as n goes to infinity. Therefore,
all subsequential limits of f−n∗ νW are ht-invariant. By unique ergodicity of ht, all
subsequential limits of f−n∗ νW must coincide with µ. Therefore f−n∗ νW converges
to µ. �

We can now compute the entropy of f with respect to µ.

Theorem 6.2. The entropy hµ(f) with respect to µ is equal to log(λ).

Proof. It follows from the fact that df vs = λ−1vs ◦ f that df−1|Es is constant
equal to λ on K. Therefore hµ(f−1|SgrΣ) = log(λ). Now, since Σ ∩K = ∅, we get

that hµ(f) = hµ(f−1) = log(λ). �

Finally, remark that since the nonwandering set of f is K ∩ Σ and since we can
extend by continuity df−1|Es at each σ in Σ by λ−1(λ+ βσ) < 1, the measure mu
is still the unique measure maximizing hν(f−1)+ν(− log det df−1|Es) for ν ranging
over the set of f -invariant measures.

6.2. Bernoulli and exponential mixing. Using the careful analysis over Markov
partition done by Ruelle in [24], we are able to deduce that (f, µ) is isomorphic
to a Bernoulli shift and that the correlations decrease exponentially fast for C1

observables supported away from Σ.

Theorem 6.3. The system (f, µ) is isomorphic to a Bernoulli shift.

Theorem 6.4. There exist constants 0 < θ < 1 and C > 0 such that for all C1

observables ϕ and ψ compactly supported away from Σ,

|µ(ϕ ◦ f−n ψ)− µ(ϕ)µ(ψ)| < C||ϕ||C1 ||ψ||C1θ−n, ∀n > 0.

The proofs of these two theorems directly follows from [24, Theorem 1.5].
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6.3. What about the Ruelle spectrum? In [15], Faure, Gouzel and Lanneau
proved that for any orientation preserving linear pseudo-Anosov ϕ map on a surface
Sg of genus g, the Ruelle spectrum can be computed explicitly. More precisely, if
λ > 1 is the dilation of ϕ and λ−1, λ, µ1, . . . , µ2g−2 is the spectrum of ϕ∗ – where
ϕ∗ is the natural action of ϕ on the first space of cohomology H1(Sg) – then the
Ruelle spectrum of ϕ for C∞c (SgrΣ) observables is {λ−nµi | 1 6 i 6 2g−2, n > 1}.
Furthermore, the multiplicity of λ−nµi is n. In order to prove this result, the
authors first show that λ−nµi are indeed Ruelle resonances and then that there are
no other Ruelle resonances.

Since f is, by construction, homotopic to such linear pseudo-Anosov map ϕ, the
action on the cohomology is the same. One might expect that the Ruelle spectrum
of (f, µ) is the same as the one of ϕ, up to a few modifications.

The key ingredients in the first part of [15] – where it is proved that λ−nµi are
Ruelle resonances – are the smoothness of the invariant foliations and the uniform
contraction of the stable foliation. This particularities remain true in the case of
the perturbation f . The argument then should carry over to the case of the specific
non-linear pseudo-Anosov maps studied in this paper.

However, the second part of [15] – where it is proved that Ruelle resonances must
be of the form λ−nµi – relies on many geometric considerations and also on the
uniform dilation of the unstable foliation. Unfortunately this last assumption fails,
by construction, in the case of f .
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tions. Inst. Hautes Études Sci. Publ. Math., (49):5–233, 1979.
[19] J. H. Hubbard. Teichmüller theory and applications to geometry, topology, and dynamics.

2016.

[20] A. Katok and B. Hasselblatt. Introduction to the modern theory of dynamical systems, vol-
ume 54. Cambridge university press, 1997.

[21] E. Lanneau. Tell me a pseudo-Anosov. Eur. Math. Soc. Newsl., (106):12–16, 2017. Translated

from the French [ MR3643215] by Fernando P. da Costa.
[22] G. Levitt. La décomposition dynamique et la différentiabilité des feuilletages des surfaces.
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